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MODELLING TRENDS IN GROUNDWATER LEVELS
BY SEGMENTED REGRESSION WITH CONSTRAINTS

Quanxi Shao1∗ and N.A. Campbell1

CSIRO Mathematical and Information Sciences

Summary

This paper provides a statistically unified method for modelling trends in groundwater
levels for a national project that aims to predict areas at risk from salinity in 2020. It
was necessary to characterize the trends in groundwater levels in thousands of boreholes
that have been monitored by Agriculture Western Australia throughout the south-west of
Western Australia over the last 10 years. The approach investigated in the present paper
uses segmented regression with constraints when the number of change points is unknown.
For each segment defined by change points, the trend can be described by a linear trend
possibly superimposed on a periodic response. Four different types of change point are
defined by constraints on the model parameters to cope with different patterns of change in
groundwater levels. For a set of candidate change points provided by the user, a modified
Akaike information criterion is used for model selection. Model parameters can be esti-
mated by multiple linear regression. Some typical examples are presented to demonstrate
the performance of the approach.

Key words: Akaike information criterion; change point; groundwater levels; model selection; seg-
mented regression with constraints.

1. Introduction

Dryland salinity is a major problem for agriculture in Australia. More than 1.2 million
hectares of productive land are currently affected by salinity, while some estimates put a further
1.6 million hectares at risk. The loss of agricultural production is more than $A240 million
per year. A current project known locally as Salt Scenario 2020 (SS2020), which involves
Agriculture Western Australia (AgWest) and the Remote Sensing and Monitoring Project in
CSIRO Mathematical and Information Sciences, aims to incorporate information on trends in
groundwater levels, based on borehole data, into salinity risk prediction. A groundwater level
is a measurement of the vertical distance from land surface to watertable. Data have been
collected irregularly in thousands of boreholes throughout Western Australia. The SS2020
has two components — describing the trends within a borehole over time, and relating the
trends to characteristics of the landscape. This paper gives details of an approach developed
for modelling the trends within a borehole over time.
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The method used currently by AgWest and in other states in Australia is a simple linear
regression (AgBores version 2.1a, Heinrich & Bennett, 1997–2000), which often provides
questionable results as the groundwater trends tend to follow different patterns over different
periods. As an alternative, the simple linear regression model is sometimes applied to annual
maxima of groundwater levels only. (An annual maximum is the highest watertable observed
in each calendar year.) Four issues arise from this approach. First, annual maxima use only
part of the collected data and do not capture the entire change in trend. Second, the maxima
derived from data may not be the true values due to low and irregular sampling frequencies.
Third, the magnitude of the seasonal variation is completely ignored and the results cannot
represent the trends in groundwater levels. Finally, only small sample sizes for annual maxima
are available because of the short sampling periods, and therefore it is often difficult to obtain
reliable statistical results.

AgWest required a consistent approach to be applied to all borehole data; such an approach
is developed and evaluated in this paper, based on a segmented regression with constraints.
Details of the problem description and definitions of change points are given in Section 2.

A major part of the modelling procedure is the determination of the number of change
points, which is an active area of statistical research; see Yin (1988), Yao & Au (1989), Barry
& Hartigan (1992) and Lee (1997). Many results in the existing literature deal with a known
number of change points, and seek to determine their locations. However, for the borehole
data, the number of change points is unknown and ideally needs to be determined during the
modelling procedure. In this paper, we establish a model that identifies the number and type
of change points. At the same time, the linear trends and seasonal variations are estimated.
A modified Akaike information criterion (AICC) is applied to the case where the number of
change points is unknown. Section 3 discusses parameter estimation and model selection.
Section 4 demonstrates the approach by analysing some typical boreholes. Section 5 gives
conclusions and discussion.

2. The problem

Thousands of boreholes have been drilled and monitored throughout Western Australia.
For these boreholes, the sampling intervals are unequal and can vary from one month to three
months, and sometimes as much as six months. The total monitoring period for a borehole
can vary from less than a year to over 10 years. It is difficult to handle data collected in short
time periods and/or in low frequencies (e.g. six months). For the model used in this paper,
reasonable sampling frequencies are required (e.g. at least one sample for each season) for
modelling seasonal variations. At least four samples are required between candidate change
points to ensure that the fitting procedure works. However, we do not intend to set a clear
exclusion criterion. Instead, we allow the user to decide whether or not a borehole should be
analysed.

Different boreholes in the available database show varying trends in groundwater level.
Generally speaking, a deep watertable shows a linear trend, whereas a shallow watertable can
be affected dramatically by seasonal variations. Typical examples of these trends are shown
in Figure 1. There are many boreholes where the trends change abruptly; these changes may
be attributable to external factors such as weather and land management practices.

Examination of the database identifies three distinct types of change point. A ‘break
point’ is defined here as a time at which both the linear trend and periodic response change
and a discontinuity may occur. A ‘join point’ is a time at which the fitted linear trend changes
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Figure 1. Some typical groundwater data: (a) Bore English #8; (b) Bore
DJ07I; (c) Bore AC3D90; (d) Bore WW07D. Depth represents the ground-
water level, which is the vertical distance from land surface to watertable.

but is continuous, while the periodic response is the same for the segments at both sides. A
‘knot point’ is a time at which the periodic response changes but is continuous, while the linear
trend is the same for the segments at both sides. A knot and a join point can occur together and
form another type of change point. That is, the linear trend and periodic response can change
at the same time, but in a continuous manner. These four types of change points are sometimes
observed for a single borehole during the sampling period. Technically, break points should
not be seen in any borehole because of the continuous nature of the change in the groundwater
levels. However, a marked change in groundwater levels due to an external event such as heavy
rainfall may be recorded as an abrupt change because of the low sampling frequency. The
use of break points accommodates these observed abrupt changes in the modelling procedure.
The model given in the next section identifies the number and type of change points.

3. Statistical approaches to modelling borehole data

This section develops, in stages, a statistical model that is capable of modelling the trends
identified. A method is also required for selecting an optimal model. An extended version of
the Akaike information criterion (AIC) is proposed.

3.1. A simple segmented regression

Assume that xi denotes the measured groundwater level at time ti (i = 1, 2, . . . , N). A
simple segmented regression model is written as

x(t) = µ�(t) + ε(t), r�−1 < t ≤ r� (� = 1, 2, . . . , L + 1) . (1)
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The deterministic part of the model, µ�(t) (� = 1, . . . , L + 1), is given by

µ�(t) = a� + b� t + ρ� sin(2πω0 t + θ�) (� = 1, . . . , L + 1); (2)

the errors {ε(ti); i = 1, 2, . . . , N} are assumed to be independent and identically distributed
as N(0, σ 2). Here r1 < r2 < · · · < rL are real numbers representing the break points, and
we take r0 = 0 and rL+1 = ∞. Denote this model by SRST[L, r1, . . . , rL] (segmented
regression system over time). The model is characterized by r1 < r2 < · · · < rL , which
divide the time dimension into segments, each of which exhibits a different pattern. The
main requirement in fitting SRST[L, r1, . . . , rL] is the determination of the number of change
points, L, and their locations r1, r2, . . . , rL . By convention, L = 0 corresponds to a simple
linear regression. For the �th segment, the linear trend is a� + b�t and the periodic response
is ρ� sin(2πω0t + θ�), where ρ� is the amplitude, ω0 is the period and θ� is the phase. The
linear trend is superimposed on the periodic response.

In our applications, the period ω0 is assumed known and equal to one year (ω0 = 1),
representing the annual cycle. Rewrite

ρ� sin(2πt + θ�) = ρ� cos(θ�) sin(2πt) + ρ� sin(θ�) cos(2πt),

and let c� = ρ� cos(θ�) and d� = ρ� sin(θ�). Each segment of the model is simply a multiple
linear regression with parameters {a�, b�, c�, d�} (� = 1, 2, . . . , L + 1). The amplitude and

the phase are estimated by ρ̂� =
√
ĉ2
� + d̂2

� and θ̂� = arctan(d̂�/ĉ�), respectively.

3.2. Model selection

Ideally, all possible combinations of sampling points would be examined and the optimal
model would then be determined using a suitable criterion. However, this is not likely to be
practical because of the potentially very large number of combinations involved. Therefore,
before selecting the optimal model, it is necessary to pre-determine a set of candidate break
points r1 < r2 < · · · < rL0

. From a modelling perspective, the candidate break points do not
have to be the sampling times. Steps in the process of model selection are given below.

For a given L ≤ L0 , there are
(
L0
L

)
different sets having L break points. A major issue

in the statistical modelling is the selection of an optimal model for change point detection.
There are many results published. Some references related to multiple change points include
Yin (1988), Seber & Wild (1989 Chapter 9), Yao & Au (1989), Barry & Hartigan (1992)
and Lee (1997). In regression analysis, a model fit can be measured by its residual sum of
squares (RSS), which decreases as the number of parameters increases. A criterion is needed so
that not too many parameters are used in selecting competing models. The so-called Akaike
information criterion (AIC) (see Akaike, 1974) is widely used in regression models. Tong
(1980) applied AIC for model selection in a threshold autoregression model. By extending the
method proposed by Sugiura (1978) for linear regression, Hurvich & Tsai (1989) derived a
modified Akaike information criterion (AICC) in small samples, and in a later paper (Hurvich
& Tsai, 1991) they claimed that the AICC dramatically reduced the bias and improved model
selections. The AICC penalizes the RSS by a function of the number of free parameters and
is given by

AICC(p) = ln
RSS

N
+ N + p

N − p − 2
, (3)

where N is the number of observations and p is the number of free parameters in the model.
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For the model specified by (2), p = 4(L + 1). We retain p in the notation of AICC(p) so
that it can be applied to extended models.

For a given set of break points, the observations can be grouped by the break points in
the set. Each segment of the model can be fitted separately and the AICC can be calculated
accordingly. The optimal set of break points for a given L is the one which minimizes AICC .
The optimal model is then the one with the overall minimum AICC .

3.3. Segmented regression with constraints

Break points are unconstrained change points in the sense that model parameters can
change freely at a break point, whereas join points and knot points are constrained change
points. Some common parameters are used by consecutive time periods separated by a join
point and/or a knot point, while there are no common parameters between consecutive time
periods separated by a break point. Therefore, in the modelling procedure, regressions can be
implemented separately for segments defined by break points, but need to be fitted simulta-
neously for consecutive segments defined by join and/or knot points.

We now discuss parameter estimation for each segment defined by break points. For
ease of notation, it is assumed that there is no break point in the model (because the model
can be fitted separately for segments defined by break points). To ensure the continuity of
the regression curve at the join points, θi (i = 0, . . . , k) are assumed to be the same, i.e.
θ0 = · · · = θk = θ. Ideally, the common phase θ should be determined by model fitting.
However, in this application the seasonal variations are strongly associated with weather and
temperatures, which have clear seasonal patterns in Western Australia. Therefore, we can
assume that θ is known. Without loss of generality, we can assume that θ = 0 by selecting
the start time point. The determination of the starting time point is based on expert judgement
rather than statistical optimum. In this application, February is a preferred starting point and
works well. For statistical completeness, an iteration algorithm on parameter estimation with
unknown θ is described in the Appendix, although it was not used in the salinity project.

Assume that there are j join points Ji, i = 1, . . . , j, and k knot points Ki, i =
1, . . . , k. (The Ji and Ki do not have to correspond to observation times.) Assume further
that Ki ⊂ {1, 2, . . .}, which means that the amplitudes can only change after the completion
of a full cycle and ensures the continuity of the regression curve at knot points. The candidate
join points should be pre-determined, to avoid having a very large number of combinations.
The full model for a segment defined by break points can then be written as

µt = a +
j∑

i=0

bi(t − Ji)+ +
k∑

i=0

ρiδ(t − Ki) sin(2πt + θ), (4)

where u+ = u if u > 0 and 0 if u ≤ 0, and δ(u) = 1 if u > 0 and 0 if u ≤ 0.By
convention, J0 < min(sampling dates) and K0 < min(sampling dates).

A set-up for parameter estimation for each segment defined by break points is outlined in
the Appendix. Assume that there are ji join points and ki knot points for segment i defined
by break points. The number of free parameters in segment i is pi = 3 + ji + ki . Therefore
the total number of independent parameters is p = ∑

i (3 + ji + ki). The optimal model can
then be obtained by minimizing the overall AICC .

In this paper, AICC is employed for model selection. The number of candidate change
points is usually small in this application. Exhaustive combinations are examined and the one
with smallest AICC is selected as the final model. However, in general, exhaustive exami-
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nation can be very time-consuming if L0 is large. In that case, a stepwise model selection
can be employed. A step-forward-and-then-backward procedure was suggested by An (pers.
comm.); some relevant results can be found in An & Gu (1984), Wang & An (1984) and An
& Gu (1986 Chapters 2 and 6).

3.4. Statistical hypothesis testing

Although hypothesis testing is not used in this application, it is useful to briefly discuss
hypothesis testing, as distinct from model selection. Discussions on the differences between
hypothesis testing and model selection can be found in Geisser (1993 Chapter 1). Gallant &
Fuller (1973) derived hypothesis testing for segmented polynomial regression models. The
techniques of hypothesis testing can be used in model selection for our model. Note that
deleting a change point from a model (denoted by M0 ) results in a degenerate form (denoted
by M1 ). That is, M1 is a special case of M0 . The model selection between M0 and M1 can
be written as a test of

H0: M1 is true against H1: M0 is true.

Following the arguments of Gallant & Fuller (1973), we can form a test statistic as

t (x) =
1
2

∑N
t=1

((
xi − x̂0(ti)

)2 − (
xi − x̂1(ti)

)2
)

1

N − p

∑N
t=1

(
xi − x̂1(ti)

)2
,

where x̂0(ti) and x̂1(ti) are the estimated groundwater levels at sampling time ti under models
M0 and M1 , respectively, and p is the number of parameters (rather than the number of
free parameters as used in AICC ) in model M0 . The approximate test rejects H0 if t (x) >
c1−α(F2,N−p) where α is the significance level.

The above significance testing relies on the choice of significance level. For the salinity
project a tidy method is preferable so that there can be a unique result for each borehole.
Therefore, we do not adopt this method here. Further study is needed to compare the different
model selection techniques.

4. Examples

Our approach is being applied to all the boreholes in the database of AgWest. In this
section, we demonstrate the approach by applying it to a range of typical boreholes. The
measurement units of time and depth are years and metres, respectively. The starting point is
taken as 1 February 1960 because it appears that the periodic variation starts in February for
the examples given here, and so that all sampling times have positive values.

There are 54 observations for Bore English #8 plotted in Figure 1(a). The candidate
join points are (15/11/1990, 01/06/1994). The candidate break point is 01/09/1992. Seasonal
variation is not fitted. The final model is given by

µ(t) =
{ 14.0602 − 0.5580t + 0.1935(t − t1)+ if t ≤ 32.61,

9.2559 − 0.3705t − 0.7708(t − t2)+ if t > 32.61,

where (t1, t2) = (30.81, 34.35) corresponds to (15/11/1990, 01/06/1994). The break point
value 32.61 corresponds to 01/09/1992. The criterion value AICC = −4.3156. The model
fit and comparison with a simple linear regression are shown in Figure 2. The estimated
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Figure 2. Observed and fitted depths for Bore English #8. Depth represents the groundwater level.
Circles represent observed values.

rates of decrease are 0.5580 m/year, 0.3645 m/year, 0.3705 m/year and 1.1413 m/year, respec-
tively. The simple linear regression is µt = 4.7972 − 0.2532t with AICC = −1.3814. It is
quite possible to obtain a smaller AICC by selecting more join points before the break point
01/09/1992. However, we chose not to do so.

There are 57 observations in Bore DJ07I plotted in Figure 1(b). (01/02/1994, 01/02/1995)
are selected as both the candidate join points and the candidate knot points. The candidate
break point is 27/06/1996. The final model is given by

µ(t) =
{

2.9822 − 0.1782t − 0.7489 sin(2πt) if t ≤ 32.43,

25.9824 − 0.7673t − 0.7482 sin(2πt) if t > 32.43,

with AICC = −0.8624, where the break point value 32.43 corresponds to 27/06/1996. The
model fit and comparison with a simple linear regression are shown in Figure 3. In the
segmented model, the estimated rates of decrease are 0.1782 m/year and 0.7673 m/year, re-
spectively. The simple linear regression is µ(t) = −3.4557+0.0121t, with AICC = 0.6488,
giving an estimated rate of increase of 0.0121 m/year.

There are 58 observations for BoreAC3D90. The observations collected after 19/02/1996
(inclusive) are omitted from the analysis because the bore dried up. Only the first 50 obser-
vations are used in the analysis. The plot is shown in Figure 1(c). There was a change in
land use in 1991. After discussion with experts in hydrology, the data before 11/07/1991 are
considered as a single segment. 01/02/1994 is selected as both the candidate join point and
the candidate knot point. The candidate break points are (11/07/1991, 14/07/1992). The final
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Figure 5. Observed and fitted depths for Bore WW07D. Depth represents the groundwater level.
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model adopted is

µ(t) =




2.9118 − 0.2206t − 0.4209 sin(2πt) if t ≤ 31.46,

86.3418 − 2.8241t if 31.46 < t ≤ 32.47,

27.5989 − 0.9746t − 0.6047 sin(2πt)
+ 0.3987 sin(2πt)δ(t − t0) if t > 32.47,

where the knot point t0 = 34.02 corresponds to 01/02/1994. The break point values (31.46,
32.47) correspond to (11/07/1991, 14/07/1992). The criterion value AICC is −1.9013. The
model fit and comparison with a simple linear regression are shown in Figure 4. In the seg-
mented model, the estimated rates of decrease are 0.2206 m/year, 2.8241 m/year and
0.9746 m/year. The rapid change in 1991–1992 may be caused by the disturbance due to
the change in land use. The simple linear regression is µ(t) = 15.6739 − 0.6252t, with
AICC = 0.1750, giving an estimated rate of decrease of 0.6252 m/year.

There are 63 observations for Bore WW07D plotted in Figure 1(d). It can be seen that
the magnitude of the seasonal variation is related to the groundwater level. (01/02/1992,
01/02/1993, 01/02/1994, 01/02/1995, 01/02/1996) are selected as both the candidate join
points and the candidate knot points. The final model is given by

µt = −12.9793 + 0.3647t − 0.9574(t − t1)+ + 0.8217(t − t2)+
− 0.2828 sin(2πt) − 0.6009 sin(2πt)δ(t − t3) ,

where the join points (t1, t2) = (33.02, 36.02) correspond to (01/02/1993, 01/02/1996) and
the knot point t3 = 34.02 corresponds to 01/02/1994. The criterion value AICC = −2.4531.
The model fit and comparison with a simple linear regression are shown in Figure 5. In
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the segmented model, the estimated rate of increase is 0.3647 m/year before 1993, the rate
decreases at 0.5927 m/year (= 36.47−95.74) in year 1994–1995, and then the rate increases
again at 0.2290 m/year. The simple linear regression is µ(t) = 8.2293 − 0.2978t, with
AICC = 0.0193, giving an estimated rate of decrease of 0.2978 m/year.

5. Conclusions and discussion

Successfully modelling trends in groundwater level is not a simple matter. The examples
presented above illustrate the power and flexibility of the segmented regression with con-
straints. The results to date are very promising, and our approach for modelling borehole
data is being adopted by AgWest for routine use. A user-friendly S-PLUS® program can be
obtained from the authors. The approach allows different linear trends for different segments
of the data, and at the same time allows the amplitude(s) of the seasonal response in the data
to vary.

Both the slopes and amplitudes (or fitted values at a nominated time) can be used to char-
acterize the borehole data, and these values can then be related to appropriate characteristics of
the landscape. The detection of change points is important in practice, because it encourages
investigation into the causes; for example, variation in weather (rainfall and temperature) and
land management. This information can then be integrated into the modelling of the bore-
hole responses. Another potential use of our method is estimating the groundwater levels at
the same time for all individual bores in a region so that the watertable at the region can be
mapped using other statistical techniques such as spatial interpolation. For different spatial
interpolators see e.g. Weber & Englund (1994).

The fundamental reason for using a statistical criterion such as AIC is to seek an objective
measure to aid decision making, which very often has a subjective element such as experience
and expert knowledge of the data concerned. Like many other statistical criteria, the modified
AIC is ultimately based on large-sample properties. As a result, the statistically determined
optimum needs to be balanced against expert judgement. An alternative model selection is
based on hypothesis testing, as proposed by Gallant & Fuller (1973) for segmented polynomial
regression models. It is very useful to compare the performance of different model selection
methods.

Note that the borehole data were in fact irregular time series. However, our model is
a segmented regression with time as covariate, and therefore possible autocorrelation errors
are omitted. For example, in the model fitting for Bore DJ07I (see Figure 3), the system-
atically undershooting peaks and overlooking valleys reveal autocorrelation errors. Further,
it is difficult in the segmented regression to assess uncertainties for model parameters, espe-
cially for the estimated change points. As alternatives, smoothing techniques, such as splines
and non-parametric regression, can be used for fitting the bore data. However, the trends in
groundwater levels cannot be easily evaluated by these techniques. Another disadvantage in
our model is that the individual boreholes were considered separately. A possible extension of
our approach would model all boreholes simultaneously. For example, random spline models,
such as are discussed by Verbyla et al. (1999), may be employed to analyse the bore data and
their relationship to hydrographical factors. More investigations are needed in modelling the
trends in groundwater levels.
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Appendix: Parameter estimation for segmented regression with constraints

The sampling dates are grouped as ((t0,1, . . . , t0,s0
), . . . , (tj,1, . . . , tj,sj ) by potential join

points. Define

X
(J)
N×1 = (x0,1, . . . , x0,s0

, x1,1, . . . , x1,s1
, . . . , xj,1, . . . , xj,sj ) ,

T
(J )
N×(j+2) =




1 t0,1 0 0 · · · 0

...
...

...
...

. . .
...

1 t0,s0
0 0 · · · 0

1 t1,1 t1,1 − J1 0 · · · 0

...
...

...
...

. . .
...

1 t1,s1
t1,s1

− J1 0 · · · 0

...
...

...
...

. . .
...

1 tj,1 tj,1 − J1 tj,1 − J2 · · · tj,1 − Jj

...
...

...
...

. . .
...

1 tj,sj tj,sj − J1 tj,sj − J2 · · · tj,sj − Jj




and β
(J )
(j+2)×1 = (a, b0, b1, b2, . . . , bj ) .

Similarly, the sampling dates are grouped as ((t0,1, . . . , t0,s0
), . . . , (tk,1, . . . , tk,sk )) by poten-

tial knot points. Define

X
(K)
N×1 = (x0,1, . . . , x0,s0

, x1,1, . . . , x1,s1
, . . . , xk,1, . . . , xk,sk ) ,

T
(K)
N×(k+1) =




sin(2πω0t0,1 + θ) 0 · · · 0

...
...

...
...

sin(2πω0t0,s0
+ θ) 0 · · · 0

sin(2πω0t1,1 + θ) sin(2πω0t1,1 + θ) · · · 0

...
...

. . .
...

sin(2πω0t1,s1
+ θ) sin(2πω0t1,s1

+ θ) · · · 0

...
...

...
...

sin(2πω0tk,1 + θ) sin(2πω0tk,1 + θ) · · · sin(2πω0tk,1 + θ)

...
...

. . .
...

sin(2πω0tk,sk + θ) sin(2πω0tk,sk + θ) · · · sin(2πω0tk,sk + θ)




,
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and β
(K)
(k+1)×1 = (ρ0, ρ1, . . . , ρk) .

Note that X(J) = X(K) = X. The regression curve can be written as

X = [T (J ) T (K)]

[
β(J )

β(K)

]
+ ε . (A1)

If the length of period ω0 and the phase θ are known (we can assume a yearly period in our
applications, which means ω0 = 1 and θ is known), the above model is simply a multivariate
linear regression model. Ordinary least squares can then be used to obtain the parameter
estimates.

An iteration algorithm for parameter estimation when θ is unknown

When θ is unknown, the following iteration can be used for parameter estimation. For
easy notation, we assume again that there is no break point. For a fixed θ, β = (β(J ), β(K))

can be estimated by using the set-up in (A1). For a fixed β, least squares is to minimize

η =
N∑
i=1

(
x(ti) − a −

j∑
i=0

bi(t − Ji)+ −
k∑

i=0

ρiδ(t − Ki) sin
(
2π(t − θ)

))2
.

Letting ∂η/∂θ = 0 and z = sin θ, simple algebra leads to

A4z
4 + A3z

3 + A2z
2 + A1z + A0 = 0 , (A2)

where A4 =
( N∑

i=1

ρs,ti ρc,ti

)2

+
( N∑

i=1

ρ2
c,ti

)2

,

A3 = −2

( N∑
i=1

(
x(ti)−a−bti

)
ρc,ti

)( N∑
i=1

ρ2
c,ti

)
−2

( N∑
i=1

(
x(ti)−a−bti

)
ρs,ti

)( N∑
i=1

ρc,ti ρs,ti

)
,

A2 =
( N∑

i=1

(
x(ti) − a − bti

)
ρs,ti

)2

+
( N∑

i=1

(
x(ti) − a − bti

)
ρc,ti

)2

−
( N∑

i=1

ρ2
c,ti

)2

,

A1 = 2

( N∑
i=1

(
x(ti)−a−bti

)
ρc,ti

)( N∑
i=1

ρ2
c,ti

)
, and A0 = −

( N∑
i=1

(
x(ti)−a−bti

)
ρc,ti

)2

,

with ρc,ti =
k∑

i=0

ρiδ(ti − Ki) cos(2πω0ti ) ,

ρs,ti =
k∑

i=0

ρiδ(ti − Ki) sin(2πω0ti ) and bti =
j∑

i=0

bi(ti − Ji)+ .

The roots of the above biquadratic equation about z can be solved explicitly; see e.g. Beyer
(1981 p. 12).

An iteration algorithm is based on (A1) and (A2) as follows.
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Step 1. Initialize the parameter estimate of θ as θ [0]. For example, let θ [0] = 0.

Step 2. In the mth iteration (m = 1, 2, . . .), given θ = θ [m−1], estimate β by solving the
multivariate linear regression (A1) and denote it by β[m].

Step 3. Given β = β[m], update the estimate of θ by solving (A2) and denote it by θ [m].

Step 4. Check the differences between the current estimates and the previous estimates.
If the maximum difference is less than a predefined tolerance value, then stop the iteration.
Otherwise, return to Step 2.
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